IPM for High Tunnel Vegetables: Practical Pathways for Organic Crop Protection

Focusing on Insect and Mite Pest Issues

MOFGA Farmer to Farmer Conference November 2019

Who Are We?

Margaret Skinner, UVM Entomologist Biological Control of Key Pests

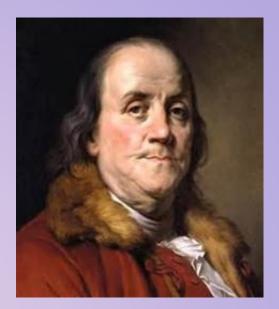
> Western Flower Thrips (greenhouses) Aphids (high tunnel vegetables)

Ron Valentin, Bioworks, Technical Specialist

Biological Control of Key Pests Banker plants **Beneficials**

- **Pooh Sprague, Edgewater Farm, Grower**
 - **Owner/Operator**

Vegetable market garden Greenhouse ornamentals

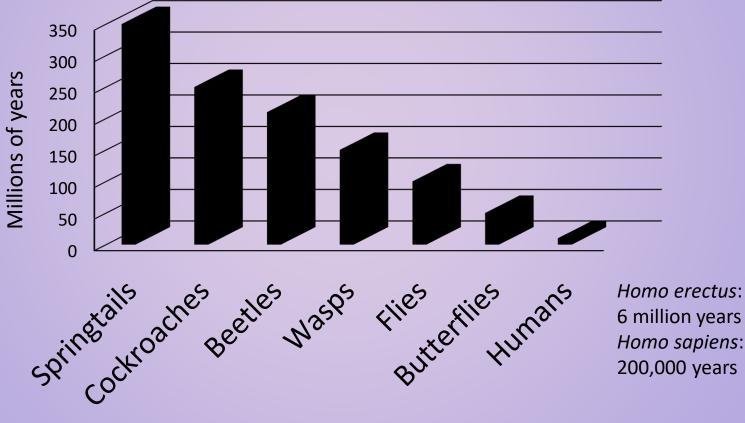


Who Are YOU?

Wisdom from Benjamin Franklin

- TELL Me and I FORGET
- TEACH ME and I may Remember
- INVOLVE ME and I LEARN

Today's Multi-Faceted Program


- Step-by-step IPM approach to insect pests: Me
- Success with Biological Control: Ron
- Welcome to the "Real World": Pooh
- Open discussion

Give a man a fish and you feed us for a day; teach us to fish and you feed us for a lifetime..

Lao Tzu, 4th Century BC

Appearance of Insects

So what?

So... How can we DEAL WITH IT?

IPM

What is IPM?

IPM = Integrated Pest Management

<u>Integration</u> of several strategies to <u>reduce pests</u> using pesticides as little as possible


> A Step-by-Step Process for Tackling Pests

To succeed with IPM, follow these words of wisdom:

Know your enemy and know yourself and you can fight a hundred battles without disaster.

Sun Tzu, 1753-1818

What's in a NAME?

- Class Insecta is separated into Orders
- Insect Orders are separated into FAMILIES
- Families are separated into GENERA
- Each Genus is separated into SPECIES

Scientific Name						
<u>Genus</u>	<u>Species</u>	<u>Author</u>				
Myzus	persicae	(Sulzer)				

(Order Hemiptera, Family Aphididae)

Common Names green peach aphid or peach-potato aphid

Some DEAD and Some ALIVE

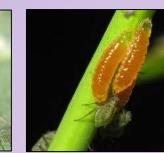
Know your friends <u>and</u> your enemies.

Know the adults <u>AND</u> the immatures.

First, Here are some of your friends.

Predatory Beetles Lady beetles

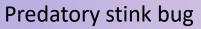
Other beetles

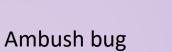


Predatory Flies

Aphidoletes (midge)

Asilidae (Robber or Assassin fly)


Syrphid Flies (Hover Flies)

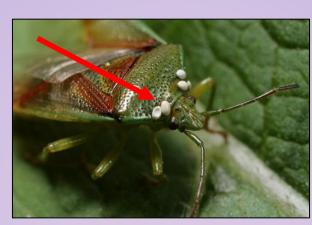

Predatory Bugs

Assassin bug

Pirate bug

Lacewings

Parasitic Wasps

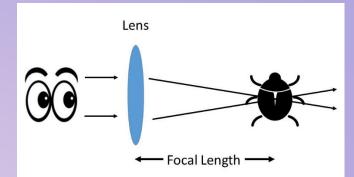


Parasitic Flies



Drama in Real Life

You need to know what the good ones look like too!


Scouting

- Use a hand lens properly
- Put up yellow sticky cards
- Start indicator plants early
- Inspect transplants before planting out

Adjust the distance between the specimen and the magnifier until the specimen is in focus

Inspect crops regularly

- Designate one person as the scout
- Look for pests AND beneficials
- Look for damage and droppings

Inspect your Crops Carefully

✓ Check undersides of leaves
 ✓ Inspect upper AND lower leaves
 ✓ Look inside flowers and plant crevices
 ✓ Tap plants on white laminated paper
 ✓ Train other staff to look out for pests

Record your results

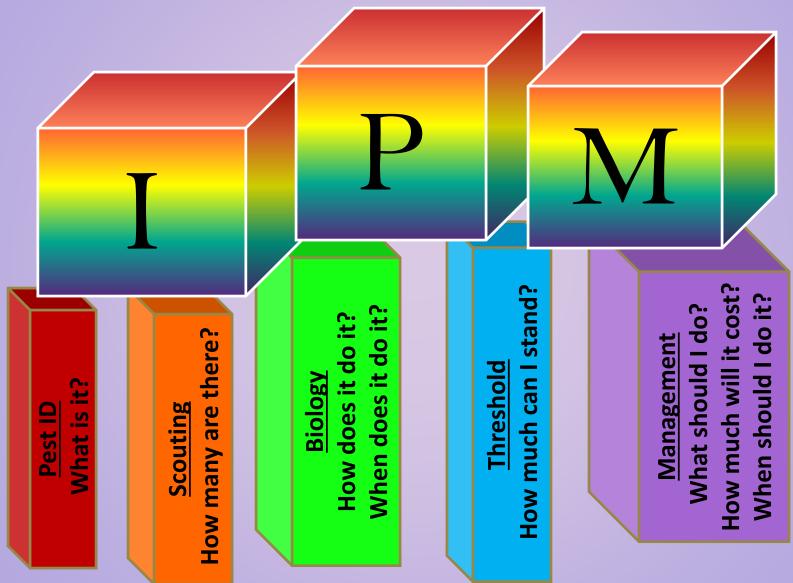
Do it YOUR way!

Reproductive Potential

Ability of an insect to multiple

- # of eggs laid
- # of generations/season
- # of females

So What?


Differences in Reproductive Production

Parthenogenetic (thrips & aphids)

		I	I	Ш	IV		
Male	0						
Female	2	200	20,000) 2 millior	a 200 million		
Sexual							
		1	II	III	IV		
Male	1	50	2,500	125,000	6,250,000		
Female	1	50	2,500	125,000	6,250,000		
		100	5,000	250,000	12.5 million		

The Building Blocks

My Introduction to IPM

They came back!

Gooseberry sawfly, Nematus ribesii

- ✓ Up to 3 generations/year.
- ✓ Female lays eggs on undersides of leaves.
- Eggs hatch into tiny green larvae that make little round holes in the leaves.
- Caterpillars get bigger develop black spots.
 They feed on leaf margins.
- Mature caterpillars drop to the soil to pupate, emerging as an adult.
- ✓ They overwinter in the soil as pupae.

Where's the

strong and weak links in this life cycle?

Their Strengths:

- ✓ Multiple generations/year.
- ✓ Female lays eggs on undersides of leaves.
- Eggs hatch into tiny green larvae that are hard to see.
- ✓ They overwinter in the soil as pupae.

Their Weaknesses:

- ✓ Larger caterpillars develop black spots. They feed on leaf margins.
- ✓ Mature caterpillars drop to the soil to pupate.
- ✓ They overwinter in the soil as pupae.

How would you use your knowledge of the life cycle to manage this pest?

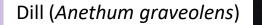
How would IPM to manage this pest?

Gooseberry sawfly

- Scout for the eggs in the early spring and pick off infested leaves. (Mechanical control) Repeat throughout the season.
- Spray leaves with insecticidal soap when larvae are small.
- ✓ *Bacillus thuringiensis* (BT) does NOT work.
- Cover with netting. Why could this be a problem?
- Treat the soil with nematodes for the pupal stage.
- Spray with a pyrethroid or pyrethrum-based pesticide registered for this crop.

Ir	itegrated Pest Management Worksheet			
Date: C	rop:			
Damage (When, Where, V	What type):			
Pest Identification:				
Common Name:				
Pest Life Cycle:				
How many generations/year?				
How many eggs laid/female?				
How long to complete one generation?				
What are the ideal conditions?				
Other key information on the biology:				
Recommended Management:				
Threshold for Action:				
Cultural Control				
Biological Control:				
Natural Enemies (naturally occurring or commercially available:				
Chemical Control:				

Future Prevention:


The IPM **Process** Steps towards developing a plan of ATTACK

Management Strategy Record

Date:	_Crop:	Pest:	
Scouting Methods U	sed:		
Results of Scouting:			
Natural Enemies Pre	sent? 🛛 Yes 🖾 No 🗖	Don't know	
Action Threshold Re	ached? 🛛 Yes 🖾 No 🕻	Don't have one	
Action Taken:			
Cultural Control:			
Biological Control: _			
Chemical Control:			
Future Prevention:			
_			
Level of Success:			
Other Notes:			

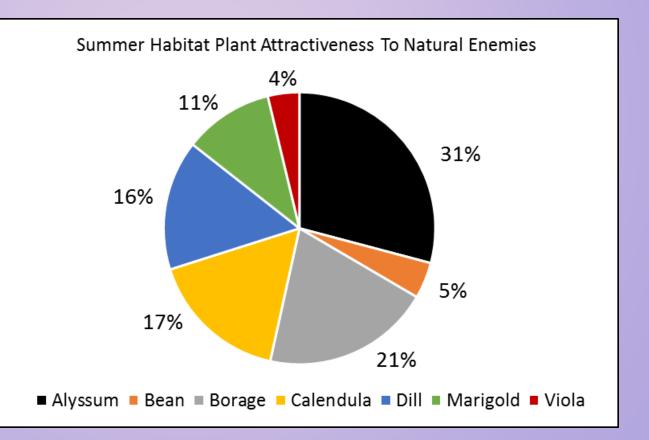
Keeping **Track of** your **Success** Why reinvent the wheel?

What YOU can do for Biocontrol? Grow habitat plants!

Alyssum (*Lobularia maritima*)

Borage (*Borago officinalis*)

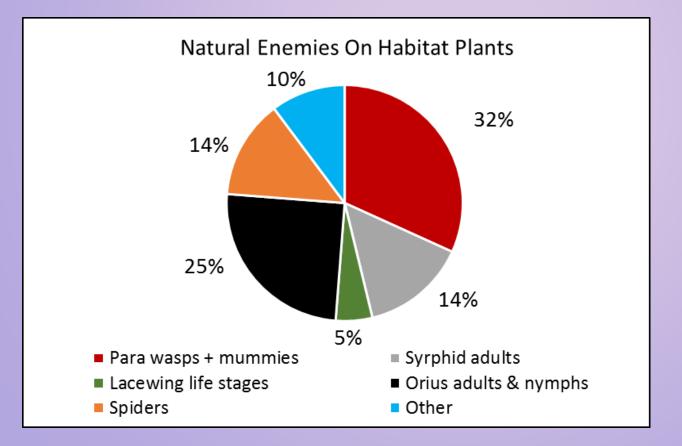
Bush Bean (P. vulgaris)


Marigold (Tagetes patula)

Habitat Plant Attractiveness

Alyssum most attractive in summer and winter

Borage 2nd most attractive in summer followed by calendula, marigold & dill Calendula & borage attracted pests (thrips, aphids), challenging to grow



Natural Enemies Attracted

Over 2,850 individual natural enemy visited habitat plantings

Parasitic wasps & mummies, Orius adults & nymphs & syrphid adults

Others include various lady beetle life stages, predatory maggots, assassin bugs, soldier beetles, etc.

Now, What about the Pests?

The Aphid Apocalypse

Identified as #1 insect pest in Northeast high tunnel vegetables

Maybe You Shoulda Scouted?

Aphids

They Suck!!

Soft-bodied with piercing sucking mouthparts

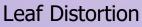
- Suck sap from phloem
- Distortion, stunting, flower drop, viruses, death

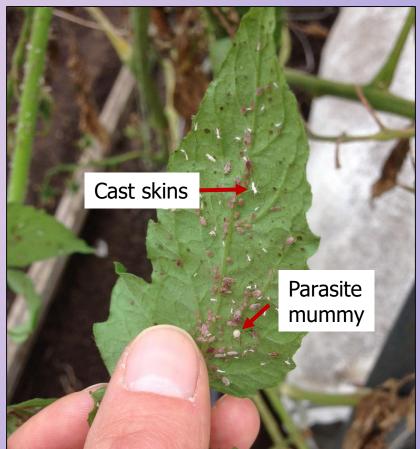
Secrete sticky honey dew on leaves Sooty mold grows on the honey dew Wide host range

Peppers, Eggplant, Greens, Tomatoes

Scare customers away

Visual & food quality issue


Aphid Damage


Scouting: Plant inspections!! Inspect growth tips & leaf undersides (older first) Check lower And upper leaves

Honey dew

Aphid Id (usual suspects)

Potato, *Macrosiphum euphorbiae* This one can decimate your tomatoes

Foxglove, Aulacorthum solani

Green Peach, *Myzus persicae* Occasional early season nuisance on tomato

Melon, Aphis gossypii

Aphid Natural Enemies

Wasp Parasitoids

Several wasp species are commercially available:

- Aphidius (colemani, matricariae, ervi)
- Aphelinus abdominalis

Many other naturally occurring spp.

Adults lay eggs inside aphids

Larvae-pupae feed on guts of the aphid and then pupate, turning aphid into brown or black 'mummies'

Adult wasps feed on nectar, honeydew (*Aphidius*) & sometimes their hosts (*Aphelinus*)

Subject to hyper-parasitism (parasite of the parasite)

Aphid Natural Enemies

Not All Wasps Are Created Equal

Parasitoid	Green Peach	Melon	Foxglove	Potato
Aphidius colemani	Х	Х		
Aphidius ervi			Х	Х
Aphidius matricariae	Х			
Aphelinus abdominalis			Х	Х

That's why it's important to ID your aphids.

When in doubt, send specimens to your diagnostic lab & talk to your bio supplier

Thrips

Several species are pests

- Western flower thrips (*Frankliniella occidentalis*)
- Onion thrips (*Thrips tabaci*)

Small & slender (cigar shaped)

Adults & larvae found on leaf undersides & within flowers (hard to detect)

Above spp. pupate in soil

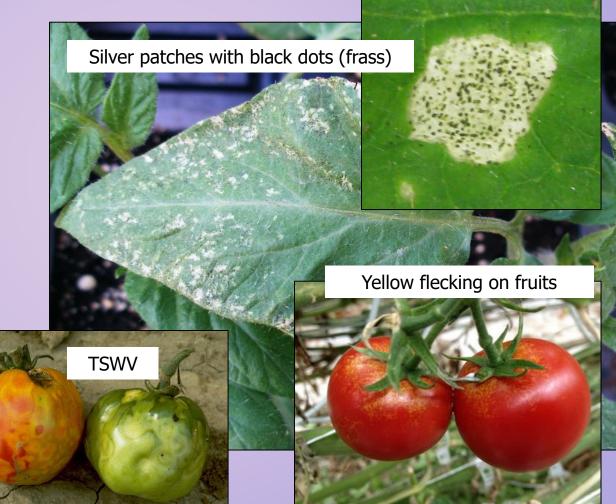
Hard to manage with contact insecticides (limited contact)

Wide host range

Cucumbers, Eggplant, Tomatoes

Both spp. transmit virus to many plant spp. (tomato spotted wilt virus)




Older & younger larvae

Thrips Damage

Western flower thrips damage on tomatoes

Stippling on onions from onion thrips

535680

Managing Thrips

Natural Enemies & Trap Plants

Monitor thrips adults with sticky cards

Amblyseius (=Neoseiulus) cucumeris

- Generalist, beige predatory mite
- Can survive on pollen & other pests

Marigold Trap Plants (Hero Yellow)

- Lure thrips out of crop, release predatory mites on marigolds
- Dispose of infested marigolds
- Cheap, easy to produce, flower prolifically

Rapid reproductive rate, Start biocontrol program early

Managing Thrips

Natural Enemies & Banker Plants

Orius spp. - Predatory bugs (adults & nymphs)

Generalist predator (also eats aphids, mites, pollen/nectars)

Adults black, grey, white & brown

Nymphs red/brown

Needs food source to establish early in season (if purchased)

Occur naturally mid-summer (undergo diapause in fall)

Alyssum/lobularia (clear crystal/snow princess) banker plants provide pollen when prey absent

Spider Mites

Green-yellow color with 2 dark spots

Found on the underside of leaves

Wide host range (tomato, cucumber, eggplant, pepper)

Thrive under Hot & Dry conditions

Overwinter inside tunnels near side walls & in structural crevices

Overwintering mites are reddish, NOT green

If you see mite webbing, you know it's a SERIOUS infestation.

Spider Mite Damage

Yellow stippling visible on leaf surfaces

Webbing

Yellow flecking on fruits

Managing Spider Mites

Natural Enemies, Trap Plants & Cultural Control

Bush bean trap plant (Provider)

Stratiolaelaps (Hypoaspis) scimitus

- Generalist predatory mite (soil dweller)
- Release around tunnel perimeter early to target overwintering mites) & other soil dwelling pests

Tip: A soft water spray can reduce mite populations, but watch out for powdery mildew.

Hornworms

Larvae (caterpillars) blend in with tomato foliage, hard to detect until extensive defoliation occurs – 90% occurs during final instar stage – July/August

Tomato Hornworm: *Manduca quinquemaculata* (Five-spotted hawkmoth)

- Horn usually black 8 white V shapes
- Adult 5 orange spots

Tobacco Hornworm: *Manduca sexta* (Carolina sphinx moth)

- Horn usually red 7 white lines
- Adult 6 orange spots
- Most common in N.E.

Adult moths feed on flower nectar

Overwinters as pupa (warm regions) or <u>in tunnels where</u> <u>soil does not freeze (results in June adults)</u>. Also migrate in from southern regions in July, 1-2 generations/year

Tomato

Tobacco

Hornworms

Pupa

Egg

Frass (poop)

Damage

Managing Hornworms

Scouting

- Check upper part of plants for feeding damage by tobacco hornworm, lower leaves for tomato hornworm
- Light traps (probably not)
- Scout every 1-2 wk during feeding period

Tip: If you find these, protect them so the wasps hatch.

Management

- Till soil to destroy pupae early in the season
- Hand pick eggs and larvae on foliage
- Remove crop residue after harvest
- Keep the weeds down
- Grow habitat plants for beneficials
- Apply *Bacillus thuringiensis* (Bt) var. *Kurstaki*

Cutworms

Many species (surface, climbing, army, subterranean, winter)

Most are night feeding caterpillars (curl up when disturbed)

Early season feed on stems, cutting off transplants at the base or notch & cause wilting

Black cutworm (*Agrotis ipsilon*)

Later season, some feed on foliage & fruit making holes or consuming the entire leaf

- Variegated cutworm (*Peridroma saucia*): climbing cutworm, day feeder
- Winter cutworm (*Noctua pronuba*)

Adults (nocturnal) feed on nectar

Adults migrate in & some overwinter in soil/debris (various life stages, most as larvae)

Overwinter as pupae or larvae

Can have multiple generations/year

Variegated cutworms

Cutworms and Armyworms

Black

Variegated

Winter

Cutworm Damage

Foliar feeding

Wide host range: tomato, beans, beets, cole crops, lettuce, small fruit, flowers, field grasses, weeds

Severed stem

External surface & neat holes on fruit

Scouting and Managing Cutworms

Scouting:

- Look for damage
- Check in the soil around damaged plants for larvae (they go deeper in drier soil)
- Many larvae are nocturnal, so scout plants in the late afternoon or early mornings
- Collect larvae and get them identified

Management:

- Minimize weeds, adults lay eggs there in the spring
- Remove weeds around outside of high tunnel
- ✓ Protect stems of seedlings
- Lay down cardboard or boards and handpick larvae hiding underneath
- Promote a broad array of predators and parasites (beetles, parasitic wasps and flies, toads, etc.
- ✓ Spray with *Bacillus thuringiensis* (Bt) var kurstaki (not too effective though)
- Apply parasitic nematodes if soil is damp and warm enough (above 45 deg. F), apply at sunset
- Cultivate the soil in the fall after harvest or in spring before planting

Thank You!

This presentation was supported by the University of Vermont Extension System and College of Agriculture and Life Sciences. Any opinions, findings, conclusions, or recommendations expressed herein are those of the author and do not necessarily reflect the view of the US Dept. of Agriculture. This presentation was given in the furtherance of Cooperative Extension work, Acts of May 8 and June 30, 2014, in cooperation with the US Dept. of Agriculture. Univ. of VT Extension and the USDA offer educational and employment to everyone without regard to race, color, national origin, gender, religion, age, disability, political believes, sexual orientation, marital or familial status. Mention of any commercial products is not meant to be an endorsement.

© 2019 Univ. of VT, Entomology Research Laboratory